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ABSTRACT

Taking Albert's (1976) formulation of a mixed model MA,, we

consider improved estimation of the variance components for

balanced designs under squared error loss. Two approaches are

presented. One extends the ideas of Stein (1964). The other is

developed from the fact that variance components can be expressed

as linear combinations of chi-square scale parameters.

Encouraging simulation results are presented. ' .

1. INTRODUCTION

Albert (1976) exhibits necessary and sufficient conditions for

a sum of squares decompoition under a mixed model to be an ANOVA,

i.e., for the terms of tie decomposition to be independent and to

be distributed as multiple.s of chi-square. We consider improved

estimation of the variance components under squared error loss in

such a set-up. We make no attempt to discuss the enormous

literature on this problem. See Harville (1977) for such a

review. Rather, we specialize to the "balanced" case considering

designs consisting of crossed and nested classifications and

combinations thereof. Rules of thumb for formalizing the

associated ANOVA table are thus well known (see, e.g., Searle

(1971, Chap. 9)). Customary estimators of the variance components

are the unbiased ones obtained as described in Searle, pp. 405-6.

Under normality these estimators are UMVU (Graybill (1954),

Graybill and Wortham (1956)) and, in fact, restricted maximum

likelihood (REKL) (Thompson (1962)). However, positive part

corrections are usually taken yielding improved mean square error
ssion For

but sacrificing these "optimalities." Bayesian approaches to GRA&I

variance component estimation in this setting are discussed in, TAB

e.g., Hill (1965) and Box and Tiao (1973). zouned El' :-fication

Since the positive part estimators are not smooth and, thus,

not admissible under squared error loss (SEL), it is natural to
.ributioz

- [Availability Codes
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seek dominating estimators. The earliest work of this type is due

to Klotz, Milton and Zacks (1969) for the one-way layout. They

show, for example, that the MLE of the "between" variance

component (see Herbach (1959)), which is itself a positive part

estimator, dominates the UJMVU and, using ideas of Stein (1964),

iht it in turn can bc dd~mna.zd.

The objective of this paper is to describe two general

approaches for creating improved estimators of the variance

components under SEL. In Section 2 we develop a method by

extending the aformentloned Stein idea. We have discussed a

special case of this approach in linear regression models in

Gelfand and Dey (1987b). Since the variance components are linear

combinations of chi-square scale parameters, we can draw upon some

literature for improved estimation of linear combinations of scale

parameters. This second 0 pproach is offered in Section 3. Work

of Dey and Gelfand (1987) for arbitrary scale parameter

distributions and of Klonecki and Zontek (1985, 1987) for the

Gamma family of distributions is pertinent here. Finally, in

Section 4 we present some simulation results.

In the remainder of this section we develop notation for and

features of the model we will be working with. Consider the

general balanced mixed model of the form

p
Y = -I + * H + X: + (1.i)

nxl r r
r=l

where Y is an n x 1 vector of observations, w is an overall mean

effect or intercept, H are known n x m incidence matrices where

Tr r
H 1 1 n and H H = r I (i.e., \ is the number of nonzeror mxl nxl r r r r

r

entries in a typical column of H ), T are independent distributed
2 r r

as N(O,o I ), X is a known n x s design matrix involving
rm

r
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possibly fixed effects and covariates, is the associated s x 1

vector of coefficients and E is an n x I vector of errors

distributed N(0,o 21 ) independent of the T Thus, Y 'I N(m,W)
en r

where

m I + X6
nxl

and W is the patterned covariance matrix

2 P2 T
W= I + - HH

en rrr
r=1

2)T 2 2 2 T
Let = ( e": , "'' cp ) Our primary interest is in

2
estimating the individually (as it has been done

r
historically) although we shall say something in Section 3 about

simultaneous estimation.

As in Albert (1976) we consider a complete set of orthogonal

p
projections, PI, P Pp' Pe, PL, P , P + P + P + P- = I

1'2' ' p efu~ e n

T
In particular, P is associated with the error, i.e., Y P Y is the

e e
full model error sum of squares. Pu is associated with the

-1 T -2 -
intercept (P 1 n ), i.e., Y P Y = nY. where Y. is the

nxn

average of the Y's. SS is the model sum of squares for the
H

T T)- T P T --2
reduced ANOVA model, i.e., SS = Y H(H H) H Y Y P Y + nY.H i

i=lI

where H - (H 12 ... H ). Note that we have a sum of squares for

each random effect. Finally, let SS ,. be the sum of squares for

the fixed effects and covariates adjusted for the ANOVA, i.e.,
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T
SSBIH - Y P Y. Typically, PB is itself expressed as a sum ofBIH

orthogonal pieces.

According to Albert (1976) (see also Brown (1984) and

Harville (1984) in this regard), we have an ANOVA if and only if

for r = , 2, ... , p, H H TP = kr P r, k = 1, ... , r, HH rP T
rr k rrrr

T T
Pu HrHr P e X P and HH r P =Br P where X - 0 orvur rre er e r r r B -r r

according to whether or not H TP = 0. Then the Q = yT P Y are
r-

2
independent and distributed as 2 where

2 p 2
e + 0. , = rank(P ), k 0, e 0,

- e -rr - - ke
r=l

T T
m P m/2' , = m P m/2 y.

We note that since for each r, I S >(H ), and,
nxl r .r r

2 2 T T
thus, = + 0 " Since H P =0 and H P = 0 , = 0 and

e r r e er

2 2
=, i.e., =7 and = . The can not be

e e e kr
determined ... icitl', without specifying: the desi:n

However, for two random effects, with respective sums of squares
yT T
Y P Y and Y P Y, if the latter is any nested or c-rossed effectk k

involving all the factors in the former, then ) > '. This is
k -- k'

in fact, Rule 12 of Searle (1971 , p. 393). Obviously, < <k <e -- k -

and typically there is a partial ordering amongst the kk
Finally, again as in Searle (1971, p. 405), if we define

T 2 2
S= (0o I ."' y ) with Y = we have = AO where

p 0 e

T

A r with {2 = whence
kr kr
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2 -1
-A Y. (1.2)

Expression (1.2) reveals a key point. The variance

components are expressible as linear combinations of chi-square

scale parameters. In fact, this expression is usually employed to
2 -1

create the familiar unbiased estimators of the o using f kQ
r k k

the unbiased estimator of -y

2. IMPROVED ESTIMATORS USING STEIN'S METHOD

Consider estimating ayk + bY k. For appropriate choices of

a, b, k, k' (in fact ab < 0), this parameter will be a variance

component. To proceed we utilize the following elementary lemma

whose proof is immediate.

Lemma 2.1. Let S be an estimator of and let T dominate

SI under SEL. Let S2 be an estimator of 2 where S2 is1• 2 2 T1 + s

independent of S1 and T C Then in estimating a1 2 aT I+ bs2

domi-aies aS + bS under SEL if1 2

DbE. ,S - TI) E, (S - v2) > 0 (2.1)
1 1 122 2 -1 2

In our applications we will meet (2.1) by having ab < 0, TI < SI

E (S 2 ) < K-2.
2

We also require the following result which is a minor

generalization of a theorem stated and proved in Gelfand and Dey

(1987b).
2 2

Theorem 2.1. Let S 2 0 + S (y + 2

0 O n 0 i 0 n

i 1, ... , t all independent where > 0, > > 0. Deine R

- Sj
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Then in estimating 0 under SEL 6 << 6 <<2 ... << 6 where

6 << 6 means 6 dominates 6i j j i
Lastly we need a lemma which appears, for example, in Klotz,

Milton and Zacks (1969, p. 1394).

Lemma 2.2. If T < S and, in estimating e > 0, S << T under
+ +

SEL then S << T , under SEL where + denotes positive part.

These results will be synthesized in the following way.

Assume ayk + byk, > 0 and w.l.o.g. that a > 0, b < 0. This will

be the case if aYk + bYk, defines a variance component. Find the

set of all Yr > Yk (excluding Y k' regardless). This set is

nonempty since at the very least Y, > 'k" Qk and the associated

set of Q form the S and S i, respectively, for Theorem 2.1 and

enable the creation of a raecreasing sequence of estimators which
-l

dominate (fk + 2) Qk , the best invariant estimator of k' The

resultant suitably defined play the role of S and T in Lemma
-l 1 1

2.1 and will be independent of S = (f + ) Q ' > 0 whence
2 k' k') i+

Lemma 2.1 holds. Finally, using Lemma 2.2, [aS + bS ] <<
4 1 2

[aT I + bS 2

Remark 2.1. Theurem 2.1 allows for a variety of improved
2

estimators for -. Let S = Q with S being the Qe 0 e i r
r = i, ... , p as well as Q and Q!. Then t = p + 2 and we may

readily create . In fact, corresponding to any specifiedt

permutation, 7, of the S there will be a resultant S r i.e.,
i 

t
there will be t! such estimators. How might we combine them to

produce a permutation invariant estimator? It can be argued that

the minimum of these will be "too small" and that the average is a

better practical choice. See Gelfand and Dey (1987b) for details.

We illustrate using the one-way ANOVA, Yij + a, + £ij I ij'

2 2
. , I J =  , ... , J, ( N(O, G), C N(O, c ), alli ij e

2 2 2
independent. In this case p = 1 with QI (7 + Jl )x ,1 e I1-1
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2 2 2 22u (ce + Jo7)x, IJ and Qe ~ e-t(J-1)
22

2(o + Jo )
e

2
In estimating 0 we may dominate the best invariant

e -1
estimator R0 = (l(J-l) + 2) Q3 using 6 = min(R0 , R I ) which in

turn is dominated by

e,2 = min(R0, Rip R2) (2.2)

or using 6' = min(RO, RI') which in turn is dominated by

e,2 =min(Ro, R', R) (2.3)

-l -l
Here R, = (I + i) (Q + Q1), RI = (I(3 -i) + 3) (n + Q ) and

e 1 e

R= (1 + ,)(Q + Q + Q )" Estimators and appear in
e I e,l e,2 2

Klotz, Milton and Zacks (1969). In practice, if we suspect

small we would use if we suspect . small we would use
e,2 e,2

and if we have no prior suspicions we would recommend

e,2 + e'2 2  
(2.4)

2 2 -e

Turning to we may write - = J ) whence the usual

-1 -l -I

unbiased estimator is given by J [(I - 1) Q = (1(0 - 1)) Q I.

*1 1
-i -l

By Lemma 2.1 this is immediately dominated by J ((I + 1) Q -

(1( - I))- IQ ] which in turn is dominated by =e ,

-l -I -l -I
J [min{(I + I) Q 19 (I + 2) (QI + Q )1 - (1(0 - 1)) Q ].

U e +
Using Lemma 2.2 we arrive at the positive part version ,
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Alternatively, again by Lemma 2.1, the usual unbiased
-1 -1 -1

estimator is dominated by J [(I-I) Q - (l(J - 1) + 2) Qe]

-1 -1 -1
which is dominated by J [(I + 1) Q1 - (I(J - 1) + 2) Q e] which

-1 -1 -1
is dominated by , J [min{(I + 1) Q (I + 2) (Q + Q'}

-1Q+
- (I(J - 1) + 2) Q]. Again by Lemma 2.2, we arrive at .

+ e 1,2
The estimator - appears in Klotz, Milton and Zacks. Ncta that

while << since 8 > we cannot conclude regarding",i ,2 1,2 1,1

++

1 and . In fact, the simulation results in Section 4 show

that neither dominates the other.

In concluding this section we remark that utilizing the ideis

in Gelfand and Dev (1987a) and in Gelfana (1987), along with the

,iformentioned results, we can improve in the estimation of th-

ratio .k' This allows for Improved estimation of, e.g.,

2 2
r . See Loh (1986) in this regard. We omit the details.r e

Unfortunately, we cannot extend this to, e.g., the intraclass

correlation coefficient since it is a non-linear function of such

ratios.

3. IMPROVED ESTIMATES USING A GEOMETRIC MEANS APPROACH

In this section we develop a method for obtaining improved

estimates which arises from expression (1.2), the fact that the

variance components are expressible as linear combinations of chi-

square scale parameters. Consider a single C2 which we write as
r

2 P p

r -k ckIk and let Q be a candidate estimator. Here

k=0 k=Ok

we denote Q by Q " When can 7 Q be dominated and what is thewdeoeQe 0 k~k



form of the dominating estimator? Dey and Gelfand (1987) discuss

this problem when the ) are scale parameters from arbitraryk

distributions. Klonecki and Zontek (1985, 1987), assuming the
k

are scale parameters from Gamma distributions, obtain conditions

which enable assessment of linear admissibility for ZlkQk, i.e.,
k k

2

admissibility within the class of linear estimators of . They
r

also offer a slightly broader class of dominating estimators than

in Dey and Gelfand (1%7)

More precisely, the following result appears in Dey and

2elfand kI,<>

Theorem 3.1. Let Y f i = 1, 2, ... , t, t > 2,

ind penden t and 'uch that EY < Consiier the os ti matar

I+t t
lot A - where i E(Y /V(Y I) n di i ii I I i i

d m in d d = Mllar i Then (3.1) dominates Y(1) 1' (t) i i

under SEL in estimating c i if eitherif

(i) d > C and 0) < b < 2td(1) (1)

(i) d < 0 and 2td ( t ) < b < 0(t)

t -1 -1
t 2t

where E(Y 1

If we denote by G(- ii ) the gamma density f (y) =i



'I

~-i -y/D
i i-It ] / -

,thena 'A+t and:= F i- + t ( +2t ).

7( a i ) i

Now let D be a diagonal matrix whose diagonal entries are the

and let G be of the form - where 7 is a nonnegativei d

definite matrix such that (7)ij O,( > 0 and Ed is a

diagonal matrix whose diagonal entries are (7)ii" Then Klonecki

and Zontek (1985) show:

Theorem 3.2. If Y G(t 7 ) I = 1 ... t independent, then

v is linearly admissible for c if and only if there exists

a matrix C of the above form such that (I + GD) = Gc where
T T

- ( , .** ), c (c , ... , c
t 1 t

Theorem 3.1 is often too restrictive. If instead we allow a

q.

Mor g LlerA' product Y we can choose q to achieve suitably

defined "d all having the same sign. In fact, for a specifiedi

set of q > 0 such that q = I Klonecki and Zontek (1987), again
I -

for gamma distributions, provide necessary and Sufficient

conditions for the existence of an estimator of this form which

improves upon Y . We state a version of their Lemma I which isii

in a form parallel to Theorem 3.1.

Theorem 3.3. :f Yi C( , ;' ) i = I ... t independent thereI I

exists b 0 such that the estimator

Y + bY , (3.2)ii .ij

where q. 0, .q 1, dominates y y under SEL, in estimating

c i if and only if either (i) or (ii) below holds. Define d * =ii i
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c +q = mind* andd* =msxd*.i i II'(1) I i (t) 1 i

(i) d * > 0, qi = 0 if d* = 0 and 0 < b < b*
(1) - i

(ii) d * < 0, qi = 0 if d* = 0 and -b* < b < 0(t) -- i

+ q" d qj.

where b* =2 2 . (a + 2q. )

{j:d.#0} j +2q q.

j

Remark 3.1. Theorem 3.3 holds more generally than for the

gamma family. Its proof only requires specification of the
l+q qin-reasing functions w (q) E(Y , i = l)/E(Y i  = ).

(In the gamma case w (q) = + q). Given w we can characterizeii i
the sets of q's which make the corresponding d*'s all have theJ i

same sign, thus enabling domination by (3.2).

Remark 3.2. The bounding of the risk difference in Theorem

3.1 is not as sharp as is possible Linder the Gamma assumption in

Theorem 3.3; hence, the resulting bounds on b in Theorem 3.3 when
J

all q are equal are more liueral than those in Theorem 3.1.
2

Returning to the estimation of a variance component -=
r

p
c k consider the estimator Q where k

k=O k=O
-l

ck' (fk + 2-k) , 0 < k < 1. The terms kQk range from the

unbiased to the best invariant estimator of c k as ranges from2 kk k

0 to 1. Since is G(. f' 2k)'
kf

k

d* = ck(k - q )/(f + 21 ) (3.3)
k k k k k k

2If ck = 0 we must set qk = 0. Thus, if Yk does not appear inkkk2 r
using Theorem 3.3, Qk does not help in estimating - . This

r dr
clearly differs from the approach In Section 2 where, for example,
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2
in estimating e all the Qk can be used to improve upon the best

invariant estimator. Note that with k as defined above, from
k

(3.3), the sign of d* depends only upon sgn(c (Fk - q )); for
k kk k

specified Ek and qk the magnitude of ck does not play a role with

respect to whether an estimator of the form (3.2) can dominate.

From (3.3) if all k = 0 or all E = I this approach willk k

provide a dominating estimator if and only if at least two c
k

differ from 0 and all nonzero ck have the same sign. For a

variance component some pair of c will have opposite signs.k

Therefore, a dominating estimator will not be obtained if for any

such pair both 's are 0 or both 's are 1. If we can choose qk

to make d * < 0 then the dominating estimator in (3.2) will be

a "shrinker." Hence, using Theorem 2.3, the positive part of

p +
(3.2) will dominate [ k- Q

k=O

In this spirit it is natural to ask whether the approach of

this section can be combined with that of the previous section.

Can we improve upon the estimators developed through Lemma 2.1 and

Theorem 2.1 using a more general version of Theorem 3.3 as

suggested in Remark 3.1? The answer appears to be no since in the

notation of Theorem 2.1 i0 is not a scale parame er for the

distribution of -.. The reader might suggest that 10 could be
J0

viewed as a scale parameter for the distribution of F underJ
suitable conditioning. Following the argument leading to Theorem

3.3, while b must be chosen unconditionally, it would have to

provide improvement at each conditional level. We can readily

show that even in the simplest case, t = 2, no b unequal to 0 can

achieve this.

As an example, we turn again to the one-way ANOVA using the
2 j-l

notation in Section 2. Recalling j 2 I - e) we consider

dominating the estimator
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-1 -l -1Q
J [(I - I + 2E-I) Q - (I(J -i) + 26 ) e] (3.4)

Thus, dI  > 0 as q < tp d *> 0 As noted above,
1 1 > e < as <e

this approach unfortunately does not provide a dominating
estimator in the two important cases where E = E = 0 and where

1. e

E = C - 1. Instead, we take
I e

(M) = E e =0 for which any ql, q2' > 0, q + q2 = I worki ' eanq 1 q,1 2

with

2(I - 1) + 2q I(J - 1) + 2q 2
0<Kb<-x

J (I - 1) + 4q I(J - 1) +

1 - ql iq

q (l + 1) I(J - )

and (3.2) becomes

-I -1 -(35

J [(I + 1) QI - (I(J - 1) Q e] + b O Qe (3.5)

(ii) = 0, = I for which any q , q2 > 0, q + q 2 I work1 e1 21 2

with

2(I - 1) + 2 q I(J - 1) + 2q2

J (I - 1) + 4q (I(J - 1) +

I I 1 q - 1) 2

q2[(. - b) + 2]

and (3.2) becomes
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ql qeJ-l[( I-I1 (J I)+2-i~e 1 O Qe

J M - 1) Q - (I(J - 1) + 2) Q + b Q Q (3.6)

We conclude this section with a remark.

Remark 3.3. Results applicable to the simultaneous

estimation of variance components under unweighted SEL are given

in Klonecki and Zontek (1987). In particular, extensions of
T

Theorems 3.2 and 3.3 are given for the estimation of a vector C 6
T

using L Y. The special case C = I (not of interest here) has been

extensively discussed. See, e.g., Berger (1980), Das Gupta

(1986), Dey and Gelfand (1987), and Das Gupta, Dey and Gelfand

(1987).

4. SIMULATION RESULTS

In the one-way ANOVA we studied improved estimation of both
2 2
-. and 7 by undertaking a substantial simulation study over
e 2 2
various values of I, J, , and - . Each case received 10,000

e
replications. Even with so many replications, resimulation of

particular cases suggests that the stated percent improvements

(P1's) will only be accurate within 2%.
2

In estimating : some selected cases are presented in Table
e

1. In this table PI is relative to the best invariant estimator

given above (2.2). Not surprisingly (2.2) outperforms (2.3) when
2

is small, and vice versa when r2 is small. The estimator (2.4)
12 

2
seems like a good compromise. For fixed 7a a ), P1's

e
increase in I, decrease in J. Although the P1's are small the

fact that (2.2)-(2.4) are so simple to calculate encourages their

use.
2

In the estimation of G 2 the reference estimator is the

positive part of the unbiased estimator.

QI Q2 +
[ ] /j (4.1)

I - 1Il(J - 1)
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TABLE 1
2

PERCENT IMPROVEMENTS IN ESTIMATING a
e

PI for
2 2)

(G, C, e (2.2) (2.3) (2.4)
at e

I = 2, J = 5 (0, 1, 10) 2.60 2.39 2.65

(1, .1, 10) 1.95 2.27 2.28

(1, 1, 1) 1.39 0.78 1.24

I = 5, J = 5 (0, 1, 10) 4.09 2.98 3.72

(1, .1, 10) 3.64 3.36 3.95

(1, 1, 1) 0.72 0.15 0.50

I = 10, J = 5 (0, 1, 10) 4.97 3.86 4.53

(1, .1, 10) 6.09 3.92 5.69

(1, 1, 1) 0.15 0.03 0.10

As shown in Section 2, (4.1) is dominated by

q Q +
1-- - e + (4.2)

I + 1 l(J - 1)

and by

QI Qe +

+ 1- l(J - 1) + 2

Neither of (4.2) and (4.3) dominates the other. However, from

Section 2,. + dominates (4.2),s dominates (4.3). For b
a'l a,2

sufficiently small (3.5) dominates (4.2) ignoring the positive

parts. With positive parts applied to both estimators this is no

longer true. Since there is no obvious optimal choice we took b
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at the middle of the allowable range.+ +
In Table 2 we compare 6 and 6 with (4.1). We see

ci a ,2
enormous improvement for both, that the Pl's are essentially

indistinguishable and that neither of the 's dominates the other.

We would draw the same conclusions in the comparison of (4.2) and
2 2

(4.3) with (4.1). of course, if a > c then 6 will tend to
C e al

be nonnegative whence the domination result in Section 2 argues+ +

for 6 * Turning to a comparison of 6 with (4.3) we see42 a,2

that if P is small the gain may be substantial. A comparison of+

6 with (4.2) would yield essentially the same magnitudes of

improvement. Again, since these estimators are so simple to

calculate, their use is encouraged. Finally, the comparison of
2

the positive part of (3.5) with (4.2) is discouraging when -, is2

smaller than . Modest improvement will usually occur when
2 2 e
2 > : . This is reasonable since then the positive part

e
modification is rarely applied and the dominance result comes into

play.
2 + 2

We conclude by recommending (2.4) for and- for
e ,2

ACKNO'ThLED C) NT

The authors acknowledge Brad Carlin for performing the
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TABLE 2
2

PERCENT IMPROVEMENTS IN ESTIMATING Go

Pl's
+ + +

vs a Vs vs (3.5) vs

(., ca, c') (4.1) (4.1) (4.3) (4.2)

I = 2, J = 5 (0, 1, 1) 92.22 91.96 17.67 -53.73

(0, 1, .1) 66.49 66.69 1.10 3.19

(0, 1, 1) 70.61 71.31 2.10 3.78

(1, .1, 1) 90.80 90.32 1.87 -53.68

(1, 1, .1) 66.44 66.64 .90 3.29

(1, 1, 1) 71.51 72.14 1.74 3.44

1 5, J = 5 (0, .1, 1) 68.55 67.72 14.90 -172.38

(0, 1, .1) 33.33 33.61 1.57 6.46

(0, 1, 1) 35.24 37.03 0.03 -174.08

(1, 1, .1) 32.08 32.33 0.63 6.56

(1, 1, 1) 33.42 35.08 0.71 3.59

= 10, J = 5 (0, .1, 1) 44.49 43.92 8.73 -336.81

(0, 1, .1) 19.55 19.73 1.35 3.77

(0, 1, 1) 19.39 20.88 1.33 -27.04

(1, .1, 1) 40.47 39.21 0.00 -338.97

(1, 1, .1) 18.81 18.91 0.10 3.60

(1, 1, 1) 18.39 19.68 0.20 -25.85
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